1 **Assessment of Eutrophication in Estuaries: Pressure-State-Response** 2 and Nitrogen Source Apportionment 3 4 5 Short Title: Assessment of Eutrophication in Estuaries 6 DAVID WHITALL* 7 8 SUZANNE BRICKER 9 NOAA National Ocean Service 10 National Centers for Coastal Ocean Science 11 12 1305 East West Highway 13 Silver Spring, MD, 20910 U.S.A. 14 15 JOAO FERREIRA 16 ANA M. NOBRE 17 **TERESA SIMAS** 18 IMAR -Institute of Marine Research 19 Centre for Ecological Modelling 20 DCEA-FCT, Qta. Torre 21 2829-516 Monte de Caparica, Portugal. 22 23 MARGARIDA SILVA 24 Instituto do Ambiente 25 Rua da Murgueira, 9 - Zambujal 26 Apartado 7587 Alfragide 27 2720 Amadora, Portugal 28 ^{*} Corresponding author. Email: dave.whitall@noaa.gov 29 30 ____ 31 ABSTRACT An eutrophication assessment method was developed as part of the National Estuarine 32

33 Eutrophication Assessment (NEEA) Program. The program is designed to improve

34 monitoring and assessment of eutrophication in the estuaries and coastal bays of the

- 35 United States with the intent to guide management plans and develop analytical and
- 36 research models and tools for managers. These tools will help guide and improve
- 37 management success for estuaries and coastal resources. The assessment method, a

38 Pressure-State-Response (PSR) approach, uses a simple model to determine Pressure and 39 statistical criteria for indicator variables (where applicable) to determine State. The 40 Response determination is mostly heuristic although research models are being developed 41 to improve that component. The three components are determined individually and then 42 combined into a single rating. Application to several systems in the European Union 43 (E.U.), specifically in Portugal, shows that the method is transferable, and thus is useful 44 for development of management measures in both the U.S. and E.U. This approach identifies and quantifies the key anthropogenic nutrient input 45 46 sources to estuaries so that management measures can target inputs for maximum effect. 47 Since nitrogen is often the limiting nutrient in estuarine systems, examples of source 48 identification and quantification for nitrogen have been developed for eleven coastal watersheds on the U.S. east coast using the WATERSN model. In general, estuaries in 49 the Northeastern U.S. receive most of their nitrogen from human sewage, followed by 50 atmospheric deposition. This is in contrast to some watersheds in the Mid-Atlantic 51 52 (Chesapeake Bay) and South Atlantic (Pamlico Sound), which receive most of their nitrogen from agricultural runoff. Source identification is important for implementing 53 effective management measures that should be monitored for success using assessment 54 55 methods, as described herein. For instance, these results suggest that Northeastern estuaries would likely benefit most from improved sewage treatment while the Mid and 56 South Atlantic systems would benefit most from agricultural runoff reductions. 57

58

59 KEYWORDS: eutrophication, estuaries, nitrogen, modeling, United States, European
60 Union, assessment

62 Introduction and Background

63	Nutrient pollution has recently been identified as the greatest threat to U.S. coastal water
64	quality (Boesch and others 2001; NRC 2000; CSO 1999). Sources of nutrients include
65	atmospheric deposition, groundwater, surface waters and land-based point and non-point
66	sources. Additionally, oceanic sources may be relevant for some systems. Potential
67	consequences of nutrient enrichment range from ecological changes to socio-economic
68	impairments (for example, fisheries, aquaculture), to serious human health threats (Figure 1).
69	Symptoms of eutrophication include low dissolved oxygen, nuisance and toxic algal
70	blooms, shifts in algal community composition and losses of submerged aquatic plants that
71	constitute a habitat for species important to coastal fisheries. These impacts cause economic
72	losses to tourism, and to commercial and recreational fisheries (Lipton and Hicks 1999, 2003).
73	Additionally, weakening or destroying native flora and fauna provides the opportunity for
74	colonization by invasive species.
75	The National Estuarine Eutrophication Assessment (NEEA) Program is a
76	management-oriented program designed to improve monitoring and assessment efforts to
77	evaluate and provide the basis for successful management. Program components focus on
78	the development of type-specific classification of estuaries, improved assessment criteria,
79	and on the use of assessment results to guide development of analytical and research
80	models and tools for managers. The intent is to make these tools accessible to help
81	improve management success for estuaries and coastal resources. This paper describes
82	results of the application of the Assessment of Estuarine Trophic Status (ASSETS)
83	eutrophication method, developed as part of the NEEA Program, from the original study

of 138 U.S. coastal waterbodies and a more recent application to several E.U. systems,

85 illustrating the transferability of the method. Further, the paper shows ongoing and

86 needed method improvements, in particular the value and need for more detailed

87 characterization of nutrient inputs. Models are used here to apportion nitrogen sources in

88 case studies using a subset of the 138 U.S. systems for which required data were

89 available.

90

91 Methods

92 Eutrophication assessment

93 In the early 1990s, signs of nutrient related degradation in estuaries, as evidenced by hypoxia in Long Island Sound, Chesapeake Bay and Mobile Bay (Welsh 1991), and 94 95 the concern that this might be a widespread problem, led NOAA to conduct a nationwide assessment of the magnitude, severity and location of eutrophic conditions. The intent 96 97 was to learn whether these problems were national, regional or local in scale, to 98 determine probable causes, and to provide information to managers on observed 99 problems that could be addressed at the appropriate level (national, state or local). The 100 National Estuarine Eutrophication Assessment (NEEA) involved about four hundred participants from academia, state, federal and local agencies, who provided information 101 and data for 138 U.S. estuaries and coastal water bodies (NOAA 1996, 1997a, b, c, 102 103 1998). Assessment results show that nutrient-related water quality problems were 104 occurring on a national basis (Bricker and others 1999; Figure 2). Since the release of the NEEA in 1999, there has been interest in updating the 105

106 assessment given the expected increase in problems in the future as coastal populations,

108 There is also interest in improving the accuracy and applicability of the methodology 109 including: 110 1) the use of data to complement and inform "expert knowledge"; 111 2) development of a type classification to improve accuracy; 112 3) improvement of assessment methods to include, for example, type-specific 113 selection of indicator variables and variable thresholds; 114 4) development of a socioeconomic indicator for assessing impairments to human uses and specifying appropriate responses; 115 5) development of tools and predictive models useful to resource managers for 116 117 making informed decisions and assessing alternative management strategies; 118 6) and apportionment of nutrient sources to support selection and implementation of appropriate management measures, i.e. the incorporation of driving forces into the 119 assessment method (Bricker and others, 2004). 120 121 Furthermore, an update of the assessment will validate the previous findings, to learn 122 whether the systems that were expected to become worse have done so. Presently the U.S. National Estuarine Eutrophication Assessment results are being 123 124 updated via an online data collection survey and a national review workshop. The results, representing decadal changes in nutrient related water quality in U.S. systems from the 125 early 1990s to the early 2000s, are expected for release in early 2007 126 127 (http://www.eutro.us). Additionally, other program components such as the type classification and development of a socioeconomic indicator (Bricker and others, 2006) 128 129 are underway.

fertilizers use and fossil fuel consumption grew (Bricker and others 1999; NRC 2000).

107

131	The ASSETS Assessment Methodology
132	The NEEA model (Bricker and others 1999), was developed into a Pressure-State-
133	Response framework, termed Assessment of Estuarine Trophic Status (ASSETS;
134	Bricker and others 2003), which assesses eutrophication in three components:
135	1) Influencing Factors on development of conditions (Pressure);
136	2) Overall Eutrophic Condition within a water body (State) and ;
137	3) Future Outlook for conditions within the system (Response).
138	The method is described here in brief, although a full description of the original method
139	can be found in Bricker and others (1999) and details for modifications can be found in
140	Bricker and others (2003), Nobre and others (2005) and Ferreira and others (in press).
141	
142	Determination of Pressure – Influencing Factors
143	A matrix is used to determine Pressure, an estimate of system susceptibility based
144	on its ability to dilute and flush nutrients and the level of nutrient input from the
145	watershed. In the original study, watershed nutrient model estimates (SPARROW; Smith
146	and others 1997), watershed population density and other demographic data in the
147	Coastal Assessment and Data Synthesis (CADS 1999) were used to estimate inputs, and
148	CADS hydrologic and physical data to determine susceptibility. Model estimates can still
149	be used as estimators of input; however, the ASSETS method uses a simple model that
150	compares anthropogenic nutrient loading with natural background concentrations. This is
151	an improvement to the model generated estimates because water quality data are from the
152	system and the timeframes are consistent with data used for the condition assessment.

153	Watershed models most often use a "base year" that may not be consistent with the
154	timeframe of the assessment data. Additionally, since the ASSETS model factors in
155	potential nutrient inputs from oceanic sources, it determines the potential success of
156	management measures. For a full description of model development see Bricker and
157	others (2003) and Ferreira and others (in press).
158	Determination of State – Overall Eutrophic Condition
159	Five variables from an original list of 16 (Bricker and others 1999) are used to
160	determine overall eutrophic condition. These were divided into two groups:
161	I. primary or early stage symptoms
162	1) chlorophyll <i>a</i> ; and
163	2) macroalgae; note that while epiphytes were used in the original study,
164	there were inadequate data on a national basis to support the use of this
165	indicator in further assessments, Bricker and others 2006); and
166	II. secondary or well developed eutrophication symptoms
167	1) dissolved oxygen;
168	2) submerged aquatic vegetation (SAV) loss; and
169	3) harmful algal bloom occurrence.
170	Statistical criteria are used to quantify chlorophyll a and dissolved oxygen (90 th
171	percentile for chlorophyll and 10 th percentile for dissolved oxygen; Bricker and others
172	2003). Additional improvements to the method for macroalgae and submerged aquatic
173	vegetation have been proposed based on a comparison of potential area of colonization
174	and effective colonized area. Presently macroalgae are determined heuristically (i.e.
175	expert identification of problems based on detrimental impacts of algal biomass on a

biological resource) and SAV is determined by observed changes in spatial coverageirrespective of potential for colonization.

178	The eutrophic rating is expressed as an estuary-wide value, using area-weighting
179	for each of the five variables (e.g. dissolved oxygen), based on concentration, spatial
180	coverage, and frequency of extreme occurrences. The primary symptom expression level
181	is an average of the level of expression values for the two primary symptoms, and the
182	worst of the three secondary symptoms (selected for precautionary reasons) represents
183	the secondary symptom expression level. These values are combined in a matrix to
184	determine the overall eutrophic ranking for each estuary.
185	
186	Determination of Response – Future Outlook
187	Response is determined using a matrix that combines susceptibility of the system
188	with expected changes in nutrient loads. Predictions of nutrient loading (increase,
189	decrease, unchanged) are based on predicted population increase, planned management
190	actions and expected changes in watershed uses. The intent of the Response component,
191	the least robust of the three, is to highlight systems where presently there is no significant
192	impact but where increased pressure is expected as the watershed is developed. This
193	component should serve to provide an early warning for systems that are at risk from
194	future watershed development in watersheds that might still be protected from future
195	degradation.
196	0
	S

197	Synthesis – Grouping of Pressure, State and Response Indicators
198	In an additional modification to the original methodology (ASSETS; Bricker and
199	others 2003), the Influencing Factors, Overall Eutrophic Condition, and Future Outlook
200	are combined into a single overall score falling into one of five categories; high, good,
201	moderate, poor or bad. These categories match the convention of the E.U. Water
202	Framework Directive (2000/60/EC), and are color coded providing a simple scale for
203	setting reference conditions useful for different types of systems.
204	
205	Additional Modifications: NEEA Update Program
206	Further modifications are being pursued in the NEEA Program including the
207	development of a type classification based on physical and hydrologic characteristics that
208	influence the expression of nutrient related impacts, such as phytoplankton blooms and
209	low dissolved oxygen, using a clustering approach (DISCO clustering tool; Smith and
210	Maxwell 2002). The intent is to classify U.S. waterbodies according to potential response
211	to nutrient inputs to facilitate assessment, monitoring and thus management of nutrient
212	related water quality problems. Classification is being used in the U.S. (to address Clean
213	Water Act regulatory requirements; e.g. EPA sponsored Nutrient Criteria Development
214	project) and in the E.U. (to address WFD requirements, e.g. Bettencourt and others 2004)
215	as a tool to help identify reference conditions and impairments as well as to determine the
216	causes of impairment and appropriate management response. The assumption is that
217	waterbodies within the same group (type) will respond similarly to a particular stressor
218	and likely also to management measures. The approach to this type classification is to
219	identify physical and hydrologic characteristics that will determine the level of response

220	(e.g. growth of algae) of a system; rather than developing groupings (types) based on the
221	response (e.g. algal biomass). This approach considers the potential response within each
222	type of system (see Kurtz and others 2006 for additional classification approaches). The
223	results will be used to re-evaluate type-specific reference conditions and thresholds for
224	desirable/undesirable response for indicator variables such as chlorophyll a to improve
225	eutrophic status assessment accuracy. For example, the current "low impact" range in the
226	ASSETS method of chlorophyll a is $0 - 5$ ug/l. However, in sensitive systems such as
227	Florida Bay, a concentration of 5 ug/l is indicative of major nutrient related impacts.
228	Type classification will allow indicator thresholds and ranges to be modified to scales
229	appropriate and relevant to each type of system. For example, in types without SAV
230	under natural conditions, an alternative indicator will be used and other indicator
231	thresholds will be appropriate to the system type, making the assessment more accurate
232	and useful for determining of impairment and possible management remedies.
233	Preliminary type classification results using the DISCO clustering approach are
234	promising (Smith and others 2004) and are presently being tested for load - response
235	relationships using the SPARROW nitrogen load estimates and SeaWiFS 1 km scale
236	color converted to chlorophyll a concentrations. This work is being conducted in
237	conjunction with EPA Nutrient Criteria Development and includes participation from
238	EPA, USGS, and NOAA in collaboration with additional agencies and universities.
239	A socioeconomic/human use indicator is being developed to complement the
240	water quality assessment. One promising approach links changes in fish catch rate to
241	changes in water quality (Lipton and Hicks, 1999, 2003 and Mistiaen and others, 2003).
242	Preliminary analysis of Long Island Sound data shows that as nitrogen inputs decrease,

243 dissolved oxygen and recreational catch of striped bass increase. The increase in catch is 244 related to changes in oxygen when other influences (for example, fishermen avidity and 245 experience, temperature, changes in fish stock) are accounted for (Mason and others 246 2004). Additionally, a regional analysis of the Gulf of Maine and Mid-Atlantic systems 247 has been promising and, with further research regarding species appropriate to other 248 regions, could be developed into a nationally applicable assessment tool (Bricker and 249 others 2006). In addition to the assessment and typology activities of the NEEA Update, the 250

251 relative importance of various nutrient pollution sources to estuaries is a critical step for 252 improving the method and utilized for evaluating the results and guiding successful 253 coastal management.

254

Linking Pressure to State and Response: How can these results be used? 255 256 The ASSETS assessment method should be applied on a periodic basis to track 257 trends in nutrient related water quality over time in order to test management-related hypotheses and provide a basis for more successful management. The null hypothesis 258 being tested in this approach is. The change in anthropogenic pressure as a result of 259 260 management response does not result in a change of state. The hypothesis is tested e.g. to verify whether decreased pressure improves state, or if increased pressure deteriorates 261 state. In many cases, a reduction in pressure will result in an improvement of state, but in 262 some cases, such as naturally occurring harmful algal bloom (HAB) advected from 263 offshore, it will not. 264

265 There are several ways to test this hypothesis: (a) Through the use of historical 266 data for the system in question; (b) By comparison to a reference system of a similar type 267 in better/worse state; (c) By enacting changes in nutrient loading through legislation 268 and/or voluntary agreement by dischargers and monitoring potential changes in state over 269 time; (d) Through the use of ecosystem models describing the state by means of 270 indicators such as chlorophyll a or dissolved oxygen as a function of nutrient loads and 271 other relevant variables (i.e. ASSETS method). The latter appears to provide the most 272 comprehensive method for determining the changes in a system and reasons for changes 273 from which appropriate management measures can be developed, whilst minimizing the 274 social costs of scenario analysis. 275 If the null hypothesis is false, it is then required to evaluate the changes in socio-276 economic drivers leading to the required changes in pressure. After these management 277 measures are taken, two subsequent monitoring steps are required: (a) The verification of 278 the effectiveness of the measures as regards changes in pressure via monitoring and 279 periodic assessment of conditions; and (b) The verification that the changes in pressure 280 are producing the desired/predicted changes in state. The costs of implementation of the 281 measures taken (i.e. the changes in Drivers) must be evaluated in the light of the expected 282 gains in total economic value linked to the changes in state. The objective function is the 283 highest net value (total economic value – costs of implementation) achievable given a limited budget for modification. 284

285

286 Source Apportionment

287	Primary productivity in aquatic ecosystems is most often related to nitrogen or
288	phosphorus limitations. Nitrogen is most often the limiting in estuaries, in contrast to
289	freshwater systems where phosphorus often limits production. Some estuaries do exhibit
290	co-limitation by nitrogen or phosphorus or limitation that varies spatially and by season.
291	The analysis of driving forces and their coupling to the ASSETS framework focuses on
292	nitrogen sources identification for eleven watersheds on the U.S. east coast. Nitrogen
293	inputs originate from both point and non-point sources. Point sources include:
294	wastewater treatment plants (WWTP) and industrial discharges. Non-point sources
295	include: agricultural runoff, septic systems, and urban and suburban runoff. Atmospheric
296	deposition of N (AD-N) is also a potentially important source of N for many coastal
297	ecosystems (Valiela and others 1992; Nixon 1996; Paerl and others 2002; Whitall and
298	others 2003).
299	Quantifying the sources of nitrogen pollution to an estuary is necessary to
299 300	Quantifying the sources of nitrogen pollution to an estuary is necessary to appropriate and effective management strategies to reduce nitrogen loading, and
299 300 301	Quantifying the sources of nitrogen pollution to an estuary is necessary to appropriate and effective management strategies to reduce nitrogen loading, and ultimately, the effects of eutrophication.
299 300 301 302	Quantifying the sources of nitrogen pollution to an estuary is necessary to appropriate and effective management strategies to reduce nitrogen loading, and ultimately, the effects of eutrophication.
 299 300 301 302 303 	Quantifying the sources of nitrogen pollution to an estuary is necessary to appropriate and effective management strategies to reduce nitrogen loading, and ultimately, the effects of eutrophication. WATERS N Model Description
 299 300 301 302 303 304 	Quantifying the sources of nitrogen pollution to an estuary is necessary to appropriate and effective management strategies to reduce nitrogen loading, and ultimately, the effects of eutrophication. WATERS N Model Description Numerical watershed models can provide useful approach for quantifying the
 299 300 301 302 303 304 305 	Quantifying the sources of nitrogen pollution to an estuary is necessary to appropriate and effective management strategies to reduce nitrogen loading, and ultimately, the effects of eutrophication. WATERS N Model Description Numerical watershed models can provide useful approach for quantifying the relative importance of nitrogen sources to coastal receiving waters. The model used in
 299 300 301 302 303 304 305 306 	Quantifying the sources of nitrogen pollution to an estuary is necessary to appropriate and effective management strategies to reduce nitrogen loading, and ultimately, the effects of eutrophication. WATERS N Model Description Numerical watershed models can provide useful approach for quantifying the relative importance of nitrogen sources to coastal receiving waters. The model used in this study was the Watershed Assessment Tool for Evaluating Reduction Strategies for
 299 300 301 302 303 304 305 306 307 	Quantifying the sources of nitrogen pollution to an estuary is necessary to appropriate and effective management strategies to reduce nitrogen loading, and ultimately, the effects of eutrophication. WATERS N Model Description Numerical watershed models can provide useful approach for quantifying the relative importance of nitrogen sources to coastal receiving waters. The model used in this study was the Watershed Assessment Tool for Evaluating Reduction Strategies for Nitrogen (WATERSN, Figure 3). The mass balance approach of this model is described

309 Driscoll (2002), Castro and others (2003), and Whitall and others (2004). Individual
310 model components are described in Table 1.

311 Atmospheric deposition of inorganic N (AD-N) and non-symbiotic N fixation 312 were assumed to be the only N inputs to forests. The contribution made by AD-N to the 313 total N runoff from upland forests was assumed to be proportional to AD-N in total N 314 inputs. N export from upland forests is estimated using a non-linear regression relationship between wet deposition of NH_4^+ and NO_3^- and stream water N export of 315 dissolved inorganic N (NH $_4^+$ and NO $_3^-$) using results of numerous forest watershed 316 317 studies in the U.S.(Neitsch and others 2001; Driscoll unpublished data). The dissolved organic N contribution to the total N load is assumed to be equal to 50% of the inorganic 318 319 N load exported from forests (Castro and Driscol 2002). Rates of in-stream N loss were 320 based on literature values and calibrated by comparing predicted and measured riverine fluxes. Castro and others (2003) calibrated the model against U.S. Geological Survey 321 (USGS) National Stream Quality Accounting Network (NASQAN) for 18 watersheds in 322 323 the eastern U.S. by adjusting the watershed and riverine N sinks. The calibrated model loadings agreed well (slope=0.995, $r^2=0.9997$) with USGS loading values from 324 monitoring at gauging stations. 325

With an understanding of the imperfections of any given model, they can be used to address questions of interest to environmental managers. The WATERSN model was used to estimate the sources of nitrogen for Casco Bay, Great Bay, Merrimack River, Buzzards Bay, Massachusetts Bay, Narragansett Bay, Long Island Sound, Raritan Bay, Delaware Bay, Chesapeake Bay and Pamlico Sound as examples of the usefulness of this approach (Figure 4, Table 2). This model could be applied to the Portuguese systems.

332 Unfortunately, funding and personnel constraints make that application beyond the scope333 of the current project.

For the purposes of this study, the Northeast has been operationally defined as
Delaware Bay and north. Chesapeake Bay and Pamlico Sound are defined as MidAtlantic estuaries. Patterns in of nitrogen sources to east coast estuaries vary by region

- 337 with striking differences between the Northeast and the Mid-Atlantic
- 338
- 339 Result and Discussion

340 ASSETS Results for Portuguese systems

Since the original ASSETS evaluation of U.S. estuaries (Figure 2), the methodology has 341 342 also been applied to Portuguese systems (Ferreira and others 2003) to test applicability to 343 systems outside the U.S. The same criteria and methods were applied to the Portuguese 344 systems as were applied to the U.S. systems so the results are directly comparable. Table 345 3a lists physical and demographic characteristics of the 10 systems that have been 346 evaluated and Table 3b summarizes statistics for the Portuguese and U.S. systems. The Portuguese systems' physical and demographic characteristics fall within the range of the 347 138 U.S. systems although the U.S. systems have a much wider range of values and the 348 349 U.S. systems have a much larger median catchment and estuary area and estuary volume. 350

351 Determination of Pressure – Influencing Factors

Table 4 shows the susceptibility results and the relative input from point and nonpoint sources of nutrients for U.S. and Portuguese systems (see Table 3 for total nitrogen loads). Note that the Portuguese systems are all of moderate or low susceptibility while

355	the U.S. systems are mostly moderate to high. This is due to the larger tidal range in the
356	Portuguese systems and smaller relative depth suggesting that as a rule there is greater
357	exchange of water relative to total volume in the Portuguese systems than in U.S.
358	systems. Although there are some regional differences with the United States, on a
359	national level nitrogen sources are similar between the two countries with the dominant
360	source being non-point and the majority of non-point source related nutrients coming
361	from agriculture, though the Portuguese systems are slightly more agriculturally
362	dominated than the U.S. systems. Influencing Factor (a combination of nutrient load and
363	susceptibility) is low to moderate high for the Portuguese systems and mostly moderate
364	and moderate high for U.S. systems (Table 5). This difference is caused by the higher
365	susceptibility of the U.S. systems.
366	
367	Determination of State – Overall Eutrophic Condition
368	The overall eutrophic conditions in the U.S. systems are moderate low to high
369	while the conditions assessed in Portuguese systems are all low to moderate (Table 5,
370	Figures 2 and 5). The reason that the Portuguese systems are not as impacted as the U.S.
371	is likely due to the higher tidal range which contributes to shorter residence times.
372	
373	Determination of Response – Future Outlook
374	For most U.S. systems conditions are expected to worsen with only 8 systems
375	expected to improve (Table 5). By contrast half of the tested Portuguese systems were
376	expected to improve with conditions in the remaining systems expected to remain
377	unchanged (Table 5). This is likely related to investments in WWTP in Portugal over the

378 past two decades, financed by the E.U. Cohesion Fund (European Commission, 2006) 379 since Portugal joined the E.U. Wastewater treatment improvements have occurred in the 380 U.S. since the 1970's, yielding some point source nutrient reductions. However, 381 additional treatment required to remove nitrogen did not become prominent until the late 1990's. Some of these efforts have resulted in noted improvements (e.g. dissolved 382 383 oxygen in Long Island Sound) though in some systems these improvements are now 384 being counter balanced by the increased populations in coastal watersheds. In the same manner, it is expected that nutrient inputs to the Portuguese systems will decrease from 385 386 these improvements, while in the U.S. the non-point sources have remained a focus of 387 management efforts.

388

Synthesis – Grouping of Pressure, State and Response Indicators 389 The combination of the three indicators into the single ASSETS score shows that 390 391 the Portuguese systems all have Moderate to High scores with lower relative impacts and 392 future conditions expected to remain the same or improve. This contrasts to more than 393 half of the U.S. systems that are rated as Poor or Bad quality due to the higher levels of impact and the expectation that conditions will become worse (Table 5). These results, 394 395 however, show the transferability of this methodology and its application to a wide 396 variety of waterbodies, not just U.S. systems, and that results can be compared internationally. A primary strength of this finding is the use of these results to determine 397 398 appropriate management measures on a broad scale. Of critical importance for 399 management application is the determination of the sources of nutrient input. While it 400 was not possible to include model analyses for the Portuguese systems at this time, we

401	highlight the use of models for this use in several of the U.S. systems with the
402	understanding that this modeling approach can be applied to Portuguese and other
403	systems provided the necessary data are available.
404	
405	WATERSN Results – Northeastern and Middle Atlantic United States
406	In the Northeast, human sewage is the major source of N loading for all nine estuaries
407	evaluated (36-81%, Figure 4). In addition, runoff from atmospheric deposition (14-35%),
408	urban areas (<1-20%), agricultural systems (4-20%) and forested land (<1-5%)
409	contributes N to these coastal ecosystems. Atmospheric N deposition, either through
410	direct deposition to the estuary surface or through watershed runoff of atmospheric
411	deposition, was generally the second highest source of N. An exception to this pattern is
412	noted for Delaware Bay, where the second highest source of N was agricultural runoff as
413	watershed transition towards more agricultural land use in the Mid-Atlantic region.
414	In the Chesapeake Bay and Pamico Sound, agricultural runoff dominates the N
415	loading (55% and 79%, respectively) with wastewater effluent (21% and 12%) and
416	atmospheric deposition also contributing significant loads (22% and 8%, respectively).
417	Loadings from urban (2% and <1%) and forest runoff (1% and <1%) made up smaller
418	portions of the total N load to these systems. This difference in patterns between regions
419	reflects both the differences in watershed populations, which drives the sewage flux, and
420	differences in land use (agricultural vs. non-agricultural).
10.1	
421	It is important that the atmospheric depositional flux originates from a variety of
422	sources. Because of a lack of comprehensive source-receptor models, it is difficult to

423 determine exactly what portion of the deposited nitrogen originates from each source, but

424	the relative contribution of sources can be quantified from emissions inventories. The
425	airsheds, or atmospheric pollutant source areas, for estuaries on the eastern U.S. seaboard
426	have been delineated previously (Paerl and others 2002). The sources of nitrogen oxide
427	(NO_x) emissions for the airsheds of the eleven study estuaries vary by airshed and
428	include: on-road mobile sources (31-38%), non-road mobile sources (12-21%), area
429	sources (9-28%), fossil fuel combustion from electric utilities (19-23%) and industrial
430	sources (9-12%) (U.S.EPA 1998). Anthropogenic emissions of ammonia (NH ₃) also vary
431	between airsheds and include: agricultural animal waste (60-73%), chemical fertilizers
432	(13-16%), domestic animals (4-7%), human breath and perspiration (3-7%), sewage
433	treatment plants and septic systems (3-6%), industrial point sources (2%) and mobile
434	sources (1-2%) (Strader and others 2001).
435	The modeled WATERSN loading results presented here compare well with
436	independently published SPARROW model results (Smith and others 1997).
437	The quantification nutrient loading drivers plays a key role in integrating social sciences
438	and natural sciences to provide sustainable ecosystem management. ASSETS provides
439	the core approach for ecosystem assessment, but it is important to note that there are
440	some problems that cannot be improved through management (e.g. some kinds of toxic
441	blooms). For problems that will potentially respond to management measures, once
442	identification of management targets is made and measures implemented, it is important
443	to continue monitoring to evaluate the success of such measures. Most importantly,
444	periodic assessments allow for the adaptation of management measures that are not
445	working and provides a basis for success.

448 Conclusions

449	In summary, the National Estuarine Eutrophication Assessment Program provides
450	a strong basis for nutrient related water quality management through application of the
451	ASSETS assessment method; however, improvements are needed. Presently, steps are
452	being taken to improve the method through development of: type-specific criteria to
453	better reflect conditions; a human use/socioeconomic indicator to complement the water
454	quality indicator and put eutrophication related losses in perspective; and development of
455	tools for managers to evaluate their systems such as the present U.S. online survey to
456	update U.S. results from the 1999 study that automatically calculates the Pressure, State,
457	Response and ASSETS scores upon entry of specifically requested data
458	(http://www.eutro.us). These concurrent activities will lead to the improvement of the
459	assessment method and the development of analytical and research models and tools for
460	managers to help guide and improve management success for estuaries and coastal
461	resources. The method has proven applicable in systems in the United States, the
462	European Union (e.g. Portugal as shown in this study, Ireland, and China;
463	http://eutro.org/syslist.aspx), and thus can be expected to be useful for management of
464	coastal water bodies worldwide.
465	An important component of the NEEA Program is identification and
466	quantification of nutrient sources to estuaries that are sensitive to eutrophication,
467	allowing an appropriate and successful management response focused on the key driving
468	forces. Here, nitrogen sources to eleven U.S. east coast estuaries have been reported.
469	There are clear regional differences between watersheds in the Northeast (dominated by

470 human sewage followed by atmospheric deposition/agriculture) and the Mid-Atlantic 471 (dominated by agricultural runoff followed by atmospheric deposition/human sewage). 472 These differences highlight the need for type classifications that NEEA Program can 473 provide. These system differences often dictate the management strategies that will be 474 most successful in protecting and remediating specific waterbodies that are sensitive to 475 and degraded by nutrient inputs. Generally, these results suggest that sewage related 476 nutrients should be further reduced in the Northeast region while reductions in agriculturally related nutrients should be the focus of management efforts in the Mid 477 478 Atlantic region. Both regions would also benefit from efforts to reduce/limit atmospheric 479 nutrient sources. 480 These results show that the WATERSN model can be applied to a variety of estuaries and is a useful tool for resource managers. A similar modeling approach could 481 be used to quantify the phosphorus loading to P sensitive estuaries to provide the basis 482 for development of a comprehensive nutrient management plan that includes both P and 483 484 N. Future work will apply these source apportionment models to Portuguese systems. 485 Acknowledgements 486 487 We would like to thank Mark Castro (University of Maryland) and Charles Driscoll (Syracuse University) for their extensive work in the original design of the 488 WATERSN model. We would also like to thank Paul Stacey, Don Boesch and 2 489 490 anonymous reviewers whose comments helped to improve the original manuscript. The

491 authors are grateful to the National Centers for Coastal Ocean Science and to E.U.

492 Contract N° INCO-CT-2004-510706 for supporting this work.

494	Literature Cited
495	Bettencourt, A., S.B. Bricker, J.G. Ferreira, A. Franco, J.C. Marques, J.J. Melo, A.
496	Nobre, L. Ramos, C.S. Reis, F. Salas, M.C. Silva, T. Simas, W. Wolff. 2004.
497	Typology and reference conditions for Portuguese transitional and coastal waters.
498	Development Guidelines for the Application of the European Union Water
499	Framework Directive, INAG/IMAR, 98 pp. http://www.ecowin.org/TICOR/
500	
501	Boesch, D.F., R.H. Burroughs, J.E. Baker, R.P. Mason, C.L. Rowe and R.L. Siefert. 2001.
502	Marine Pollution in the U.S Prepared for Pew Oceans Commission, Arlington, VA.
503	
504	Bricker S.B., C.G. Clement, D.E. Pirhalla, S.P. Orlando and D.R.G. Farrow. 1999.
505	National Estuarine Eutrophication Assessment. Effects of Nutrient Enrichment in
506	the Nation's Estuaries. NOAA, National Ocean Service, Special Projects Office
507	and National Centers for Coastal Ocean Science, Silver Spring.
508	http://spo.nos.noaa.gov/projects/cads/nees/Eutro_Report.pdf
509	
510	Bricker, S.B., J.G. Ferreira and T.Simas. 2003. An Integrated Methodology for
511	Assessment of Estuarine Trophic Status. Ecol. Modelling 169: 39-60.
512	0
513	Bricker, S., G. Matlock, J. Snider, A. Mason, M. Alber, W. Boynton, D. Brock, G. Brush,
514	D. Chestnut, U. Claussen, W. Dennison, E. Dettmann, D. Dunn, J. Ferreira, D.
515	Flemer, P. Fong, J. Fourqurean, J. Hameedi, D. Hernandez, D. Hoover, D.

516	Johnston, S. Jones, K. Kamer, R. Kelty, D. Keeley, R. Langan, J. Latimer, D.
517	Lipton, R. Magnien, T. Malone, G. Morrison, J. Newton, J. Pennock, N.
518	Rabalais, D. Scheurer, J. Sharp, D. Smith, S. Smith, P. Tester, R. Thom, D.
519	Trueblood and R. Van Dolah. 2004. National Estuarine Eutrophication
520	Assessment Update: Workshop summary and recommendations for development
521	of a long-term monitoring and assessment program. Proceedings of a workshop 4-
522	5 September 2002. Patuxent Wildlife Research Refuge, Laurel, Maryland.
523	
524	Bricker, S.B., D. Lipton, A. Mason, M. Dionne, D. Keeley, C. Krahforst, J. Latimer, J.
525	Pennock. 2006. Improving methods and indicators for evaluating coastal water
526	eutrophication: A pilot study in the Gulf of Maine. NOAA technical report 20.
527	
528	
529	Coastal Assessment and Data Synthesis System (CADS). 1999. NOAA, National Ocean
530	Service, Special Projects Office, Silver Spring. http://cads.nos.noaa.gov.
531	
532	Castro M., C. Driscoll, T. Jordan, W. Reay, W. Boynton, S. Seitzinger, R. Styles and J.
533	Cable. 2000. Contribution of atmospheric deposition to the total nitrogen loads
534	of thirty-four estuaries on the Atlantic and Gulf Coast of the United States. Pages
535	77-106 in R.Valigura (ed.) Atmospheric Nitrogen Deposition in Coastal Waters.
536	No. 57, Coastal Estuarine Science Series. AGU Press, Washington, DC.
537	S
538	Castro, M., and C. Driscoll. 2002. Atmospheric nitrogen deposition to estuaries in the

539	mid-Atlantic and northeastern United States. Environmental Science and
540	Technology 36: 3242-3249.
541	
542	Castro, M., C. Driscoll, T. Jordan, W. Reay and W. Boynton. 2003. Sources of Nitrogen
543	to Estuaries in the United States. Estuaries 26: 803-814.
544	
545	Coastal States Organization (CSO). 1999. Technology and Information needs of the Coastal and
546	Estuarine Management Community. NOAA, OOCR and CICEET.
547	0
548	Driscoll, C., D. Whitall, J. Aber, E. Boyer, M. Castro, C. Cronan, C. Goodale, P.
549	Groffman, C. Hopkinson, K. Lambert, G. Lawrence and S. Ollinger. 2003.
550	Nitrogen pollution in the northeastern United States: Sources, effects and
551	management options. BioScience 53: 357-374.
552	
553	European Commission, 2006. Regional Policy – Inforegio.
554	http://ec.europa.eu/regional_policy/funds/procf/cf_en.htm
555	Ferreira, J.G., T.Simas, A.Nobre, M.C. Silva, K. Schifferegger and J. Lencart-Silva.
556	2003. Identification of Sensitive Areas and Vulnerable Zones In Transitional and
557	Coastal Portuguese Systems. Application of the United States National Estuarine
558	Eutrophication Assessment to the Minho, Lima, Douro, Ria de Aveiro, Mondego,
559	Tagus, Sado, Mira, Ria Formosa and Guadiana systems. INAG/IMAR.
560	
561	Ferreira, J.G., A. M. Nobre, T. C. Simas, M. C. Silva, A. Newton, S. B. Bricker, W. J.

562	Wolff, P.E. Stacey, A. Sequeira. 2005. Monitoring Plan For Water Quality and
563	Ecology for Portuguese Transitional and Coastal Waters: Development of
564	guidelines for the application of the European Union Water Framework Directive.
565	INAG - instituto da Água • IMAR - Institute of Marine Research, Lisbon,
566	Portugal.
567 568	Earraire LC S.P. Prieker and T. Simes (in press) Application and constitutity testing of
308	Ferreira, J.G., S.B.Bricker and T. Sinias. (in press) Application and sensitivity testing of
569	an eutrophication assessment method on United States and European Union
570	coastal systems. Journal of Environmental Management.
571	
572	Kurtz, J.C., N.D. Detenbeck, V.D. Engle, K. Ho, L.M. Smith, S.J. Jordan and D.
573	Campbell. 2006. Classifying Coastal Waters: Current Necessity and Historical
574	Perspective. Estuaries and Coasts 29(1): 107-123.
575	
576	Lipton, D.W. and R. Hicks. 1999. Linking water quality improvements to recreational
577	fishing values: The case of Chesapeake Bay Striped Bass. Pges 105-110 in T.J.
578	Pitcher (ed.), Evaluating Recreational Fisheries: Papers, Discussion and Issues: A
579	conference held at the UBC Fisheries Center June 1999. Fisheries Centre
580	Research Reports 1999 Vol 7 No 2.
581	
582	Lipton, D.W. and R. Hicks. 2003. The cost of stress: Low dissolved oxygen and
583	recreational striped bass (Morone saxatilis) fishing in the Patuxent River.
584	Estuaries 26: 310-315.
585	

586	Mason, A., D.W. Lipton and S.B. Bricker, S.B. 2004. Improving indicators of water
587	quality degradation impacts for management of estuarie and coastal waters. Page.
588	102 in American Society of Limnology and Oceanography and The
589	Oceanography Society 2004 Ocean Research Conference Abstract Book. 15-20
590	February 2004. Honolulu, Hawaii. http://aslo.org/honolulu2004/files/aslo-tos-
591	2004-abstracts.pdf
592	
593	Meisinger, J. and G. Randall. 1991. Estimating nitrogen budgets for soil-crop systems.
594	Paged 85-125 in R. Follett, D. Keeny, R. Cruse, R (eds.). Managing nitrogen for
595	groundwater quality and farm profitability. Soil Science Society of America,
596	Madison, WI.
597	
598	Mistiaen, J.A., I.E. Strand and D.W. Lipton. 2003. Effects of Environmental Stress on
599	Blue Crab (Callinectes sapidus) harvests in Chesapeake Bay tributaries.
600	Estuaries 26: 316-322.
601	
602	National Agricultural Statistics Service (NASS). 2005
603	http://www.nass.usda.gov/QuickStats/
604	
605	National Atmospheric Deposition Program/National Trends Network (NADP/NTN).
606	2005. http://nadp.sws.uiuc.edu/
607	S
608	National Oceanic and Atmospheric Administration (NOAA). 1996. NOAA's Estuarine

609	Eutrophication Survey. Volume 1: South Atlantic Region. National Oceanic and
610	Atmospheric Administration, National Ocean Service, Office of Ocean Resources
611	Conservation and Assessment. Silver Spring.
612	
613	National Oceanic and Atmospheric Administration (NOAA). 1997a. NOAA's Estuarine
614	Eutrophication Survey. Volume 2: Mid-Atlantic Region. National Oceanic and
615	Atmospheric Administration, National Ocean Service, Office of Ocean Resources
616	Conservation and Assessment. Silver Spring.
617	
618	National Oceanic and Atmospheric Administration (NOAA). 1997b. NOAA's Estuarine
619	Eutrophication Survey. Volume 3: North Atlantic Region. National Oceanic and
620	Atmospheric Administration, National Ocean Service, Office of Ocean Resources
621	Conservation and Assessment. Silver Spring.
622	
623	National Oceanic and Atmospheric Administration (NOAA). 1997c. NOAA's Estuarine
624	Eutrophication Survey. Volume 4: Gulf of Mexico Region. National Oceanic
625	and Atmospheric Administration, National Ocean Service, Office of Ocean
626	Resources Conservation and Assessment. Silver Spring.
627	
628	National Oceanic and Atmospheric Administration (NOAA). 1998. NOAA's Estuarine
629	Eutrophication Survey. Volume 5: Pacific Coast Region. National Oceanic and
630	Atmospheric Administration, National Ocean Service, Office of Ocean Resources
631	Conservation and Assessment. Silver Spring.

632	National Oceanic and Atmospheric Administration (NOAA) Special Projects Office
633	(SPO). 2005.
634	http://spo.nos.noaa.gov/projects/cads/data_references/fertilizers/fertilizer_doc.pdf
635	
636	National Research Council (NRC). 2000. Clean Coastal Waters: Understanding and
637	Reducing the Effects of Nutrient Pollution. National Academy Press,
638	Washington, DC. 405 pp.
639	
640	Neitsch, S, J. Arnold, J.Kinney and J.Williams. 2001. Soil and Water Assessment Tool
641	Theoretical Documentation. http://www.brc.tamus.edu/swat/swat2000doc.html.
642	
643	Nixon, S., J. Ammerman, L. Atkinson, V. Berounsky, G. Billen, W. Boicourt, W.
644	Boynton, T. Church, D. Ditoro, R. Elmgren, J. Garber, A. Giblin, R. Jahnke, N.
645	Owens, M. Pilson and S.Seitzinger. 1996. The fate of nitrogen and phosphorus at
646	the land-sea margin of the North Atlantic Ocean. Biogeochemistry 35: 141-180.
647	
648	Nobre, A.M., J.G. Ferreira, A. Newton, T. Simas, J.D. Icely and R. Neves. 2005.
649	Managing eutrophication: Integration of field data, ecosystem-scale simulations
650	and screening models. Journal of Marine Systems 56: 375-390.
651	0
652	Paerl, H., R. Dennis and D. Whitall. 2002. Atmospheric deposition of nitrogen:
653	implications for nutrient over-enrichment of coastal waters. Estuaries 25: 677-
654	693.

656	Schlesinger, W. and A. Harley. 1992. A global budget for atmospheric NH ₃ .
657	Biogeochemistry 15: 191-211.
658	
659	Smith, C.A. and B.A. Maxwell. 2002. Deluxe Integrated System for Clustering
660	Operations (DISCO). http://narya.engin.swarthmore.edu/disco/.
661	
662	Smith, R.A., G.E. Schwarz and R.B. Alexander. 1997. Spatially referenced regressions
663	on watershed attributes (SPARROW). Regional interpretation of water quality
664	monitoring data. Water Resources Research 33: 2781-2798.
665	
666	Smith, S. V. 2003. Preliminary NOAA estuarine typology database.
667	http://eutro.org/typology.aspx
668	
669	Smith, S.V., R.W. Buddemeier, S.B. Bricker, B.A. Maxwell, P. Pacheco and A. Mason.
670	2004. Estuarine Typology: Perturbations and eutrophication responses, p. 150. In
671	American Society of Limnology and Oceanography and The Oceanography
672	Society 2004 Ocean Research Conference Abstract Book. February 15-20, 2004.
673	Hawaii Convention Center, Honolulu. http://aslo.org/honolulu2004/files/aslo-tos-
674	2004-abstracts.pdf
675	S
676	Strader R., N.Anderson N. and C. Davidson. CMU NH ₃ Inventory Version 1.2. 2001.
677	http://www.envinst.cmu.edu/nh3/.

6	7	8
~		\sim

679	United States Environmental Protection Agency (U.S.EPA). 1998. Average annual
680	emissions, all criteria pollutants. National Emissions Inventory Report.
681	http://www.epa.gov/ttn/chief/trends/ index.html.
682	
683	Valiela, I., K. Foreman, M. LaMontagne, D. Hersh, J. Costa, P. Peckol, B. DeMeo-
684	Anderson, C. D'Avanzo, M. Babione, C. Sham, J. Brawley and K. Lajtha. 1992.
685	Couplings of watersheds and coastal waters: Sources and consequences of
686	nutrient enrichment in Waquoit Bay, Massachusetts. Estuaries 15: 443-457.
687	
688	Welsh, B. 1991. Anoxia and Hypoxia in Long Island Sound, Chesapeake Bay, and
689	Mobile Bay: A comparative assessment, p 35-40. in K.R. Hinga, D.W. Stanley,
690	C.J. Klein, D.T. Lucid and M.J. Katz [eds.], The National Estuarine
691	Eutrophication Project: Workshop Proceedings. National Oceanic and
692	Atmospheric Administration and the University of Rhode Island Graduate School
693	of Oceanography. Rockville, Maryland.
694	
695	Whitall, D., B. Hendrickson, B. and H. Paerl. 2003. Importance of atmospherically
696	deposited nitrogen to the annual nitrogen budget of the Neuse River estuary,
697	North Carolina. Environment International 29: 393-399.
698	20
699	Whitall, D., M. Castro and C. Driscoll. 2004. Evaluation of Management Strategies for

- 700 Reducing Nitrogen Loadings to Four U.S. Estuaries. Science of the Total
- 701 Environment 333:25-36.

SCEO P

702 List of Figures

703

- Figure 1: Conceptual model of eutrophication. (note that epiphytes are no longer used due
- to inadequate data availability)

706

- 707 Figure 2: Results of the National Estuarine Eutrophication Assessment for Overall
- 708 Eutrophic Conditions. Results are a combination of 6 indicators: Chl a, macroalgae,
- rog epiphytes, dissolved oxygen, loss of submerged aquatic vegetation and occurrence of
- nuisance and toxic algal blooms. (from Bricker and others 1999)

711

- 712 Figure 3: Conceptual diagram of Watershed Assessment Tool for Evaluating Reduction
- 713 Strategies for Nitrogen (WATERSN) model.

hco.

- 714
- 715 Figure 4: Nitrogen source apportionment for 11 U.S. east coast estuaries presented as kg
- 716 of nitrogen per hectare of watershed area. Location of estuaries (inset).

717

- 718 Figure 5: Results of application of NEEA/ASSETS eutrophication assessment method to
- 719 Portuguese systems for Overall Eutrophic Condition (from Ferreira and others 2003).

721 Table 1: Components of WATERSN Model

Term	Flux Type	Notes	Reference
N fertilization	Agricultural input	Fertilizer sales data	NOAA-SPO 2005
		by county	
N fixation	Agricultural input	Unique values by	Castro and others 2000
		crop	
Livestock waste	Agricultural input	Difference between	Internal model
		feed imports and	calculation
		the production of	
		meat/milk/eggs	
Atmospheric	Agricultural input	Annual N	National Atmospheric
deposition		deposition values	Deposition
		from National	Program/National
	0	Atmospheric	Trends Network, 2005
		Deposition	
	C.	Program	
Crop harvest	Agricultural	Agricultural	NASS, 2005
	output	Census data	
Pasture grazing	Agricultural	Agricultural	NASS, 2005
00	output	Census data	
Volatilization of	Agricultural	10% of fertilizer	Schlesinger and Hartley,
NH ₃	output	and atmospheric	1992
		deposition; 15% of	

	ammai waste	
ricultural	10% of inputs	Meisinger and Randall,
tput		1991
ban export	Based on	Internal model
	population on	calculation
	sewer systems	0
ban export	Based on	Internal model
	population not on	calculation
	sewer systems	
ban export	From SWAT	Neitsch and others 2001
	model	
	ricultural put pan export pan export	ricultural 10% of inputs put 10% of inputs put Based on population on sewer systems pan export Based on population not on sewer systems pan export From SWAT model

System	Watershed	Estuarine	N load per unit	N load per unit	2
	Area	Area ² (km ²)	watershed area ¹	estuary area	OEC ³
	(\mathbf{km}^2)		$(\text{kg N km}^{-2}\text{yr}^{-1})$	(tons N km ⁻² yr ⁻¹)	
Casco Bay	2188	427	449.5	2.3	MH
Great Bay	2491	47	667.8	36.3	MH
Merrimack	12458	16	825.1	642.4	U
River					
Massachusetts	2089	768	7408.6	7.9	Μ
Bay					
Buzzards Bay	1021	639	1045.0	3.4	ML
Narragansett	4018	416	2101.7	20.3	ML
Bay					
Long Island	40774	3259	977.5	12.2	MH
Sound					
Raritan Bay	36114	799	2110.6	95.4	Μ
Delaware Bay	30792	2070	1669.1	25.8	ML
Chesapeake Bay	160765	5470	919.6	13.1	Н
Pamlico Sound	25090	452	1808.4	8.1	U

724 Table 2: Watershed and Estuary characteristics for WATERSN model application

726

 ¹ From Driscoll and others (2003).
 ² From S. Smith (2003).
 ³ From Bricker and others 1999. OEC is Overall Eutrophic Condition. ML = moderate 727

low; M = moderate; MH = moderate high; H = high; U = unknown. rate 728

Table 3: Characteristics of 10 Portuguese systems (a) and summary characteristics for 10

731 Portuguese (Ferreira and others 2005) and 139 United States estuaries and coastal

a. Systems	Catchment	Estuary	Estuary	Mean	Tidal	Residence	Watershed	N Load/estuary	
	area	Area ²	Volume ²	Depth	Range	Time	Population	surface area	
	(km^2)	(km^2)	$(10^6 \mathrm{m}^3)$	(m)	(m)	(days)	$(X10^{3})$	$(10^3 \text{ tons } \text{km}^2)$	
								yr ⁻¹)	
Minho	17.1	23	67	4	2	1.5	1,000	0.47	
estuary	2.5		10		2		00		
Lima estuary	2.5	5	19	2	2		80	0.22	
Douro	97.6	6	65	8	2	<2	4,123	3 6.67	
Pie de	2.4	60	Q /	1	2		700	0.02	
Aveiro	5.4	00	04	1	2	\mathbf{D}^{4}	700	0.02	
Mondego	67	0	21	2	3	2 66		0.02	
estuary	0.7	7	21	2		<u> </u>	00	0.02	
Tagus estuary	80	330	2,200	11	2.6	19	9,030	0.09	
Sado estuary	7.7	170	770	10	2.7	21	270	0.01	
Mira estuary	1.6	3	17	6	2.4	-	26	0.05	
Ria Formosa	0.8	49	92	2	2	0.3	168	0.02	
Guadiana	66.8	18	96	7	2	12	1,900	0.56	
estuary									
b.	Catchment	Estuary	Estuary	Average	Tide	Tidal FW	Watershed	N Load/estuary	
	area (km ²)	area (km ²)	volume (10^6)	depth (m)	height (m)	flushing	population	surface area	
			m [°])			(days)	(10^{3})	$(10^3 \text{ tons } \text{km}^2 \text{ yr}^{-1})$	
PT Systems			0			Res time [*]			
Min	0.8	3	17	1	2	0.3	26	0.01	
Max	97.6	330	2,200	11	3	21	9030	6.67	
Median	7.2	20.5	75.5	5	2	3	485	0.07	
US Systems									
Min	22	1	0.2	0.05	0.03	0	0.196	7.3 X 10 ⁻⁵	
Max	2.9×10^{6}	6974	99,000	96	5.6	3841	73009	2.28	
Median	3975	237	665	2.84	1.03	4	216	0.01	

732 waterbodies (b; From Smith 2003)

733 *Note that the available data related to residence time for U.S. systems is tidal freshwater

flushing. This will be similar to residence time for systems which are not dominated by

riverine flows. Caution should be used when comparing PT with U.S. systems for this

variable.

Table 4: Results of susceptibility and analysis of importance of non-point source nutrient

739 loads for U.S. and Portuguese systems (from Bricker and others 1999; Ferreira and others

Region	Susce	ptibility		Nutrient Inputs*			
	(as nu	mber of syst	tems)	(as % of systems)			
	High Moderate		Low	>50% of	Ag as		
				total input	>30%		
				as NPS	NPS		
No.Atlantic	0	6	12	78	0		
Mid-Atlantic	15	7	0	91	60		
So. Atlantic	8	9	4	100	81		
Gulf of Mexico	12	23	2	100	85		
Pacific Coast	14	18	7	89	50		
U.S. Total	49	63	25	92	50		
Portugal	0	5	5	89	67		

740 2003; SPARROW results modified by CADS, 1999)

- *as percent of 130 U.S. systems for which there were SPARROW estimates
- and percent of 10 Portuguese systems for which nutrient sources were available
- 743
- 744

- 746 Table 5: Results for U.S. and PT for Influencing Factors, Overall Eutrophic Condition
- 747 and Determination of Future Outlook.

	InfluencingOverallEutrophic									
			Determination of							
	Facto	rs	Condition		Future Outlook			ASSETS		
Scale	U.S.	PT	U.S.	PT	Scale	U.S.	PT	Scale	U.S.	PT
					Worsen					
High	14	0	16	0	High	27	0	Bad	18	0
Medium					Worsen					
High	43	4	28	0	Low	59	0	Poor	53	0
					No					
Medium	38	1	40	1	Change	44	5	Moderate	28	3
Medium					Improve	0				
Low	25	2	31	4	Low	8	3	Good	19	2
	1.5				Improve			· · · ·		
Low	17	3	7	2	High	0	1	High	2	2
Unknown	2	0	17	3	Unknown	1	1	Unknown	21	3
	5	,								

751	
752	

Will be and a set of the set of t

Whitall et al. Assessment of Eutrophication in Estuaries Figure 1

Whitall et al. Assessment of Eutrophication in Estuaries Figure 2

Whitall et al. Assessment of Eutrophication in Estuaries Figure 3 **Outputs**

Whitall et al. Assessment of Eutrophication in Estuaries Figure 4

Whitall et al. Assessment of Eutrophication in Estuaries Figure 5